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We identify a family of centre-mode disturbances to inviscid swirling flows such as
jets, wakes and other vortices. The centre modes form an infinite family of modes,
increasingly concentrated near to the symmetry axis of the mean flow, and whose
frequencies accumulate to a single point in the complex plane. This asymptotic
accumulation allows analytical progress to be made, including a theoretical stability
boundary, in O(1) parameter regimes. The modes are located close to the continuous
spectrum of the linearized Euler equations, and the theory is closely related to that of
the continuous spectrum. We illustrate our analysis with the inviscid Batchelor vortex,
defined by swirl parameter q . We show that the inviscid instabilities found in previous
numerical studies are in fact the first members of an infinite set of centre modes of the
type we describe. We investigate the inviscid neutral curve, and find good agreement of
the neutral curve predicted by the analysis with the results of numerical computations.
We find that the unstable region is larger than previously reported. In particular, the
value of q above which the inviscid vortex stabilizes is significantly larger than
previously reported and in agreement with a long-standing theoretical prediction.

1. Introduction
The stability of vortices is a topic with wide ranging applications and has

accordingly received much attention from researchers, both experimental and
theoretical. Swirling pipe flow, the trailing line vortex from an aeroplane wing and
many other instances of vortex breakdown provide applications for the theory we
present. We will concentrate here on Batchelor’s (1964) model of the trailing line vortex
as our prototype flow. In the last few years numerical observations have uncovered
many complicated aspects of this problem. The aim of this paper is to describe the
mathematical structure of the inviscid instabilities, one aspect of the larger problem.

There is an enormous literature available on vortex stability, dating back to Rayleigh
(1916) and the famous stability criterion for axisymmetric rotating fluid. More recently
the attention of theoreticians has been concentrated on two particular flows. Rotating
pipe flow has been investigated by many, a representative sample of the published
work being the papers by Maslowe (1974), Maslowe & Stewartson (1974), Wang &
Rusak (1996) and Cotrell & Pearlstein (2004). Analytical progress has been largely
confined to the regime of asymptotically large azimuthal wavenumber; see Maslowe &
Stewartson (1974) and related papers.

Even more attention has been focused on the Batchelor vortex (also known as the
trailing line or q vortex), and it is on this example that we focus our attention in the
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present paper. Numerical studies have been carried out by Lessen, Singh & Paillet
(1974), Duck & Foster (1980) and Mayer & Powell (1992) in the case of inviscid
flow. Finite-Reynolds-number calculations have been performed by Lessen & Paillet
(1974), Khorrami (1991), Mayer & Powell (1992) and Fabre & Jacquin (2004), the
latter being able to reach values of Re � 106 (Re based on the vortex core radius
and core axial velocity). Instabilities of a purely viscous nature were first found
by Khorrami (1991), who observed growth rates which decay as Re−1 in the limit
Re → ∞. More recently, Fabre & Jacquin (2004) have observed viscous modes with
growth rates decaying as Re−1/3, and a large-Re asymptotic description of these is
given by Le Dizès & Fabre (2006) (N B the first appearance of these modes appears
to be in figure 24 of Olendraru & Sellier 2002). For all known viscous modes, a
maximum growth rate occurs, usually O(10−2) or smaller, at a finite value of Re.
In contrast, the inviscid modes have growth rates which increase to a finite limit
as Re → ∞, the largest inviscid growth rate being 0.46 (see Mayer & Powell 1992).
The inviscid growth rates increase with m (m being the azimuthal wavenumber; see
Leibovich & Stewartson 1983), but so does the action of viscous damping. These two
effects were balanced by Denier & Stott (2005), who found the largest growth rates
at finite Re by taking the scaling m ∼ Re1/2.

Few general analytical results are available for the stability of swirling flows.
Perhaps the most significant result is the sufficient criterion for instability derived by
Leibovich & Stewartson (1983). This result was achieved via large-|m| asymptotics for
the inviscid case, and a number of follow-up papers used similar analyses to give more
details of the large-|m| stability boundaries. For the Batchelor vortex Leibovich &
Stewartson’s criterion implies instability for q <

√
2. Numerical studies have found

that the flow is inviscidly stable for mean swirl numbers greater than q � 1.5, a figure
first found by Lessen et al. (1974) and later by Mayer & Powell (1992) and others.
However, the other theoretical result of particular relevance is that of Stewartson &
Brown (1985), who performed a remarkable near-neutral asymptotic analysis at
finite |m|. They found that, asymptotically close to the neutral point, the inviscid
instabilities were of a centre-mode type, and that the vortex becomes stabilized at
q = 2.31. Previous numerical calculations of the inviscid problem, however, have not
found unstable modes at any swirl numbers greater than q � 1.5. Thus a discrepancy
has existed between the prediction of Stewartson & Brown (1985) and the results
of numerical calculations for some time. The value q � 1.5 appears to have been
most widely accepted: for example, Ash & Khorrami (1995), Loiseleux, Chomaz &
Huerre (1998), Delbende, Chomaz & Huerre (1998), Fabre & Jacquin (2004) and Le
Dizès & Fabre (2006) all quote the q � 1.5 result. The location of this ‘upper neutral
point’, the swirl level at which the inviscid instabilities are neutralized, is important to
the wider problem because vortex breakdown is often observed at q � 2 (Leibovich
1978). Inviscid instabilities, which for smaller q are the strongest of all instabilities,
have not been found at such large values of q and so it is assumed that other effects
must be responsible: for example the viscous modes of Fabre & Jacquin (2004) exist
at all swirl levels if Re is sufficiently large, and so may provide such a mechanism.
Clarification of the location of the inviscid neutral curve and its upper neutral point
is important for this reason, and is one of the problems we consider.

In the context of the above review of the relevant literature, the new results of
the present paper can be summarized. We restrict our attention to purely inviscid
flow, and show that there exist centre modes, which can be stable or unstable. The
modes have their asymptotic centre-mode form for generic O(1) parameters (rather
than in a large-|m|, near-neutral, or other parameter limit) and they form an infinite
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set of eigenvalue frequencies (in a temporal analysis, correspondingly wavenumbers
in a spatial analysis). Our analysis also yields a new theoretical prediction for the
location of the stability boundary. We consider the Batchelor vortex as a case study,
for which it is demonstrated that the inviscid instabilities, as found by several previous
numerical studies, are in fact centre modes of the type we describe. Using numerical
methods which are suited to the asymptotic structure of the centre modes, and which
produce no spurious results, we are able to find many more of the higher-order modes.
We also investigate the neutral curve for the inviscid modes, and find good agreement
between the theoretical predictions and numerical computations. Further, both our
computational and our theoretical neutral curves agree with the result of Stewartson &
Brown (1985) that the inviscid Batchelor vortex is stabilized for q > 2.31. At this
point, and also around the rest of the neutral curve, our asymptotics and numerics
disagree with the previously reported numerical results. We believe that the previous
numerical results are in error, as a result of the characteristic structure of the centre
modes (which lie close to the continuous spectrum) and also the peculiar shape of
the neutral curve (which has a very narrow tongue extending to larger q), two factors
which make computations difficult. Our numerical method is chosen to resolve the
centre-mode asymptotic structure as well as possible, whereas some other methods are
not as suitable for this purpose, something we discuss in detail later. As a result, the
previous numerical work has missed unstable modes for q > 1.5, and we will present
for the first time numerically obtained inviscid modes in the range 1.5 < q < 2.31.

Recently Heaton & Peake (2006) (herein referred to as I) reported various stability
results for inviscid compressible swirling flow in an annular pipe. The present paper
extends the theory of I to vortices with no centre body, and so we briefly review the
findings of I here. Starting from the standard Briggs–Bers method, the continuous
spectrum of the linearized Euler equations was identified and its contribution to a
generic unsteady field was described and calculated. Intimately related to the continu-
ous spectrum, hydrodynamic nearly convected modes were described which comprise
an infinite set or sets of modes which accumulate in the complex frequency-plane (in
a temporal analysis, or the wavenumber-plane in a spatial analysis) towards a point
in the continuous spectrum. The infinite accumulation of frequency (or wavenumber)
eigenvalues allows analytical progress to be made and the asymptotic accumulation of
wall modes (stable) and ring modes (stable or unstable, localized on a radius within the
annular duct) was described. It was found in I that the continuous spectrum can cause
a new algebraic instability, significantly stronger than the linear growth of the ‘lift-up’
effect in two-dimensional shear flow (see Landahl 1980). This effect is also present in
the flows we consider here, such as the Batchelor vortex, but for now we concentrate
our attention on the exponential (discrete) instability modes. The results of I reviewed
here were purely hydrodynamic in nature, unaffected by compressibility. In the present
paper, as we extend the relevant theory of I to vortices with no centre body, we restrict
attention to incompressible flow for simplicity. The analysis we present for the centre
modes is an extension of the treatment of ring modes given in I. It is a broadly
similar asymptotic problem, but with several important differences in the calculation.
In particular, these differences mean that for the centre modes a theoretical stability
boundary can be derived, something not available for the ring modes in I.

The remainder of this paper is set out as follows. In § 2 the governing equations and
their relevant singularity structure are discussed. In § 3 we perform the asymptotic
calculation which defines unstable centre modes and derive a related stability criterion.
In § 4 we outline the analogous calculation for stable centre modes. In § 5 we turn to
apply our ideas to the Batchelor vortex: we show that the analysis of § 3 applies, and
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we also perform direct numerical calculations to investigate the instabilities. In § 5.4
we turn to investigate the inviscid neutral curve, concentrating especially on m = −1.
Some final conclusions are drawn in § 6.

2. The governing equations
We consider unsteady perturbations to incompressible inviscid fluid with a

cylindrically symmetric mean flow which is of swirling jet or wake type. The flow
may be confined in a cylindrical pipe or unconfined as the case may be. We use
cylindrical polar coordinates (x, r, θ) and lengths, densities and velocities are non-
dimensionalized by representative values of the mean flow, e.g. the pipe radius or the
vortex core radius. The incompressible flow has total velocity

U tot(x, r, θ, t) = U0(r) + u(x, r, θ, t), (2.1)

being the steady mean flow plus a small unsteady perturbation. The mean flow we
consider takes the form

U0 = U (r)ex + W (r)eθ . (2.2)

We impose some restrictions on the inviscid mean flows to be considered, namely

W (0) = U ′(0) = 0, (2.3)

W ′′(0) = W (iv)(0) = U ′′′(0) = 0, (2.4)

which, we argue, are natural conditions to place on real-life flows. Condition (2.3)
simply ensures that the velocity and pressure are non-singular on the coordinate axis
r = 0, while (2.4) is satisfied by profiles which realistically model high-Reynolds-
number viscous flows. Firstly, rotating Poiseuille flow, which is the exact solution of
the Navier–Stokes having the form (2.2), automatically satisfies (2.4). Secondly, it is
also seen that (2.4) holds for all the most commonly used vortex models, including the
Rankine, Burgers, Lamb–Oseen and Batchelor vortices. In all cases (2.4) results from
the nature of the approximation or similarity solution applied to the Navier–Stokes
equations, and so would seem to be an acceptable condition on profiles modelling
real high-speed flows. Our comments above notwithstanding, not all inviscid vortex
models satisfy (2.4), for example the ad hoc profiles of Carton & McWilliams (1989),
so we will mention briefly the formal behaviour in such cases also.

The Euler equations linearized about the mean flow (2.2) can be reduced to a
single ODE for the radial component v of the perturbation velocity, as was done by
Howard & Gupta (1962). Suppose all perturbations are Fourier-decomposed so that

u(x, r, θ, t) = u(r)e−iωt+ikx+imθ , (2.5)

where m is the integer azimuthal wavenumber, k the axial wavenumber and ω

the frequency. We seek solutions of the governing equations which are causal, or
equivalently which are bona fide limits of viscous solutions in the limit of vanishing
viscosity (a point discussed by Olendraru et al. 1999). This is achieved by following
the Briggs–Bers technique (Briggs 1964; Bers 1983) for deforming the relevant Fourier
inversion contours. For simplicity we consider the temporal stability problem, so that
k is given and fixed throughout the analysis. Equivalently one could consider the
spatial problem by considering ω as given and fixed, and the results and methodology
are almost exactly the same. The relevant theory from I was performed for a spatial
problem, but here we work in the temporal framework to enable direct comparison
with previous published results when we come to apply our work to the case of the
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Batchelor vortex. In general it is the physical context of a problem which determines
whether a temporal or spatial framework is more relevant.

To proceed we define

Λ(k, ω, r) = Uk − ω + mW/r, (2.6)

corresponding to the Lagrangian derivative operator D0/Dt . We also let

ωc(r) = U (r)k + mW (r)/r, (2.7)

which, since Λ(k, ωc(r), r) ≡ 0, is the frequency corresponding to pure convection of
the unsteady perturbation by the mean flow at radius r . It will also be convenient to
define the (typically complex and multivalued) inverse rc(k, ω), such that

Λ(k, ω, rc(k, ω)) ≡ 0. (2.8)

Howard & Gupta’s equation, the mode-shape equation, is then(
r

(m2 + k2r2)
(vr)′

)′

−
{

1 +
r

Λ

(
r2Λ′ + 2mW

r(m2 + k2r2)

)′

− 2kW (k(Wr)′ − mU ′)

(m2 + k2r2)Λ2

}
v = 0,

(2.9)

where prime denotes differentiation with respect to r . The boundary conditions to
be applied to (2.9) are v = 0 at the pipe wall if present, or v → 0 as r → ∞ if the
flow is unconfined. Since we wish to consider flows with no centre body, at r = 0 the
regularity conditions derived by Batchelor & Gill (1962) must be applied; here they
reduce (using (2.3)–(2.4)) to

v(0) = 0, |m| 	= 1,

v′(0) = 0, |m| = 1.

}
(2.10)

In fact, the details of the boundary condition to be applied at r = 0 will not prove to
be very important; rather the fact that a real boundary condition of some sort must
be applied will be enough to generate the centre-mode behaviour we describe.

2.1. The singularity structure of the governing equation

The mode-shape equation (2.9) is similar to the mode-shape equation (2.21) of I,
the two differences being that here we assume the fluid to be incompressible and
we take a different choice of dependent variable. Viewed as an ODE in r with k, ω

& m fixed, (2.9) has singularities at r = 0 and at the critical radius r = rc(k, ω) (i.e.
when the coefficient of the highest derivative v′′ is zero and when Λ = 0, respectively).
The singularities are usually regular singular points (RSPs) of (2.9), and in this case
an elementary Frobenius expansion, v = ξσ

∑∞
0 anξ

n where ξ = r − r∗ and r∗ is the
singular radius, is possible. We find that

σ0 = −1 ± m, (2.11)

σc = (1 ±
√

1 − 4A(rc))/2, (2.12)

for the exponents at r∗ = 0 and r∗ = rc(k, ω) respectively, where

A(r) ≡ 2Wk (k(Wr)′ − mU ′)

r2ω′2
c

, (2.13)

and primes, as elsewhere, mean differentiation with respect to r . In the analysis
to follow k will be fixed, so the notation of (2.13), in which A(r) is written as a
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function of r alone, will prove convenient. A(r) is the same function that appeared
in I and controls many related features of the spectrum, including the stability of
the continuous spectrum and the presence and nature of ring and wall modes. We
note that (2.12), which will prove to be a key ingredient in our analysis, is the same
exponent as would be obtained if the flow were compressible (cf. (2.28) of I).

In solving any given temporal problem, after fixing k, we must invert the temporal
Fourier transform along the relevant contour defined by the Briggs–Bers procedure:
the correct Briggs–Bers inversion contour in the complex ω-plane passes above all
singularities and modes. In particular this includes the continuous spectrum, given by

Cω = {ωc(r)}, (2.14)

the set of frequencies for which a singular point rc exists in the flow geometry. Because
the solution to (2.9) cannot be holomorphic in ω for ω ∈ Cω, Cω defines a branch
cut of the complex ω-plane and every frequency it contains contributes to the Fourier
inversion. For some such frequencies the singularities of (2.9) cease to be regular,
namely when ω = ωc(r

∗) and additionally

ω′
c(r

∗) = 0, (2.15)

in which case two RSPs merge and form a non-regular, or essential, singularity. In
such cases the denominator of (2.13) vanishes. An essential singularity for which
r∗ 	= 0 corresponds to the ring modes and was treated in I.

Here we observe that (2.3)–(2.4) imply that ω′
c(0) = 0, and hence for such flows there

is always a frequency, ω = ωc(0), for which an essential singularity is present at r =0.
Let us define the real constant

α0 =
2kW ′(2kW ′ − mU ′′)

(kU ′′ + mW ′′′/3)2

∣∣∣∣
r=0

, (2.16)

for which it follows that

A(r) ∼ α0/r2 as r → 0. (2.17)

The possibility for unstable centre modes will hinge on the sign of α0, which we note
has the same sign as the ‘modified Rayleigh quantity’ near the origin,

W ((Wr)′ − mU ′/k). (2.18)

Before beginning the calculation we briefly mention what happens if (2.3)–(2.4) do
not hold (for example, they do not hold for the ad hoc vortex profiles of Carton &
McWilliams 1989). In such cases ω′

c(0) 	= 0, and as a result the boundary conditions
at r =0 do not give rise to the behaviour we will describe. Instead r =0 simply acts
like a pipe wall or any other boundary, and ‘wall modes’ of the type described in
I, which are always stable, may be present. As mentioned above, (2.3)–(2.4) do hold
for all commonly used vortex models and we believe they constitute a reasonable
restriction to impose.

3. The case of α0 < 0 and unstable centre modes
We assume wavenumbers k, m are given real constants with m ∈ �, and seek the

eigenvalue frequencies such that (2.9) is satisfied along with appropriate boundary
conditions at r = 0, ∞ (or at an outer pipe wall, if applicable). In this section we
assume

α0 ≡ −ν2 < 0, (3.1)
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Inner region: R̄ ≡ r/|ε| = O(1)
Intermediate region: R ≡ r/|ε|1/2 = O(1)

Outer region: r = O(1)

Table 1. The three asymptotic regions in the unstable centre mode calculation, § 3.

and we look for complex frequencies given by

ω = ωc(0) + ε ≡ ωc(0) + ξ + iη, ξ, η ∈ �, (3.2)

with |ε| � 1. We shall see that there are three distinguished asymptotic regions, which
for clarity are defined together in table 1. We now look at each region in turn and
use asymptotic matching to construct the solution to (2.9).

3.1. Inner region

In the inner region

Λ = −ε + O(ε2), (3.3)

and hence to leading order (2.9) reduces to

d

dR̄
R̄

d

dR̄
R̄v =

{
m2 +

ν2ω′′2
c |ε|2R̄2

ε2

}
v, (3.4)

where ω′′2
c is evaluated at r = 0. Solving (3.4) and applying the regularity conditions

(2.10), the inner-region solution is given correct to O(1) by

v =
1

R̄
J|m|(−iνω′′

c R̄|ε|/ε). (3.5)

3.2. Intermediate region

In the intermediate region to leading order we have

Λ = −ε + ω′′
c |ε|R2/2 + O(ε2). (3.6)

The leading-order governing equation is thus found to be of WKBJ type,

d2Φ

dR2
=

|ε|ν2ω′′2
c Φ

(−ε + ω′′
c |ε|R2/2)2

+ O(1), (3.7)

where we define Φ ≡ R3/2v in order to simplify the appearance of the equation.
Equation (3.7) can be solved and we find the two linearly independent solutions in
the intermediate region are, transforming back to v,

v = f±(R, ε) ≡ R−3/2

√
1 − ω′′

c |ε|R2

2ε
exp

{
±

√
1 +

2ν2ω′′
c

ε
tanh−1

(
R

√
ω′′

c |ε|
2ε

)}
. (3.8)

Asymptotically matching (3.5) with the solutions (3.8) gives the correct solution in
the intermediate region as

v ∝ f+(R, ε) + eiπ|m|+iπ/2f−(R, ε). (3.9)

The overall constant of proportionality in (3.9) does not matter as the whole problem
is linear: we only need the relative proportions in which the two solutions (3.8) are
present.
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3.3. Outer region

Finally we consider the outer region where r = O(1). In this region the leading-order
governing equation does not simplify sufficiently to allow a general solution to be
written down; however, we can still make progress. To leading order

Λ = ωc(r) − ωc(0), (3.10)

and hence r = 0 is a double zero of Λ (recall that ω′
c(0) = 0 for the vortices we

consider). The leading-order equation in the outer region is obtained by setting ε = 0
in (2.9) and (3.2), but cannot in general be solved analytically; to obtain two linearly
independent outer-region solutions in practice requires a numerical calculation. A
consequence of (3.10) is that r = 0 is an essential singularity of the leading-order
equation and so we can at least obtain the r → 0 behaviour using standard methods
(see p. 76 of Bender & Orszag 1978). We choose formally to define two independent
solutions g±(r) of the leading-order problem by using the r → 0 asymptotics so that,
after a little algebra,

g±(r) ∼ r−1/2 exp

{
±2ν

r
∓ 3r

16ν

}
as r → 0. (3.11)

We now must match (3.9) with a combination of g±(r) using (3.11) in order
to complete the calculation. It is easily seen that f±(R, ε) and g±(r) do indeed
functionally match; however, the essential singularity leads to a technical difficulty.
We wish to track the coefficients of both g±(r), but if we perform our matching
procedure with real values of r then g−(r) is exponentially smaller than g+(r) for
small r , and the matching rule will not yield the coefficient of g−(r). To overcome
this difficulty we formally perform the matching procedure along the imaginary axis
in the complex r-plane, which ensures that g±(r) are both of the same magnitude as
r → 0. We shall revisit this technicality later in § 5.1.

The matching can now proceed in a straightforward manner: away from r = 0 a
boundary condition is applied in the outer region, such as decay at infinity in an
unbounded fluid or v =0 at a pipe wall. This determines an O(1) constant Q such
that

v ∝ g+(r) + Qg−(r) in the outer region, (3.12)

which is to be matched as r → 0 with (3.9) as R → ∞. On comparing the various
coefficients we find

iπ

√
2ν2ω′′

c

ε
− iπ|m| − iπ

2
+ log Q = 2πni, (3.13)

for some n ∈ �, and this determines ε and hence the frequency ω. Since |ε| � 1, the
mode number is large, n � 1. Because the neglected terms in (3.7) are O(1), which
follows directly from (2.3)–(2.4), the neglected terms in the WKBJ solution (3.8) are
seen to be O(ε1/2) and so do not contribute any O(1) terms to (3.13). This implies
that (3.13) is correct to O(1), and hence we can deduce that

ε =
ν2ω′′

c

2n2
+

ν2ω′′
c

2n3

(
log Q

iπ
− |m| − 1

2

)
+ O(n−4). (3.14)

This final result (3.14) shows that an infinite number of centre-mode solutions exist,
labelled by increasing mode number n, and that far down the asymptotic tail the
frequency ω is real to leading order. If we restrict our attention to unstable modes
(Im(ε) > 0) then the picture in the complex r-plane is as in figure 1(a). The regular
singular points where Λ =0 for a frequency as given by (3.14) are seen to lie close
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(a) Im (r)

Re (r)

(b) Im (r)

Re (r)

Figure 1. Schematic picture of the regular singular points (RSPs), shown by ⊗, together with
corresponding circles of convergence. (a) α0 < 0, Im(ε) > 0 (§ 3) shown in the case when
ω′′

c (0) > 0. If ω′′
c (0) < 0 the picture is reflected in the real line. (b) When α0 > 0.

to the real line as shown. We see that analytic continuation off the real line so as to
approach r = 0 along arg(r) = sign(−ω′′

c (0))π/2 is possible, as depicted by the dashed
line in figure 1(a), justifying the formal matching procedure described above.

The result of the calculation in this section is similar in many ways to the ring
modes considered in I, with (3.14) implying that in the ω-plane the frequencies lie just
above or below the continuous spectrum (see figure 2 below). Also, the Frobenius
exponents (2.12) are found to be O(|ε|−1/2) large and real to leading order: this causes
the solution v to be strongly peaked and highly oscillatory as r increases through
real values past the singularity close to the real line in figure 1(a). Therefore the
eigenmodes have rapid oscillations and are localized at

r ∼
√

2ε/ω′′
c ∼ ν/n. (3.15)

The oscillatory behaviour is not immediately visible in (3.8), but is hidden in the
delicate behaviour of tanh−1 when its argument is close to unity. The radial velocity
v therefore is concentrated and highly oscillatory in the intermediate region, and this
justifies the term centre mode.

The present calculation differs from the analysis in I in several ways, most obviously
the presence of a genuine third asymptotic region, the inner region, which deals with
the complications of the Batchelor & Gill regularity conditions at the coordinate axis.
Ultimately the most significant difference actually results from the relatively minor
point that the error term in (3.7) is smaller than its equivalent in the ring-mode
calculation of I. This in turn means that (3.14) is correct to second order and we can
read off the growth rate of the centre modes. For flows which satisfy (2.3)–(2.4) we
can therefore deduce that a centre-mode neutral curve is given simply by

|Q| = 1. (3.16)

The quantity Q is obtainable numerically purely from the outer-region problem, for
which one sets ε =0, and so Q depends only on k, m and the mean flow profiles U &
W . We will find in § 4 below that another portion of the neutral curve is given by α0 = 0.

4. The case of α0 > 0 and stable centre modes
In this section we rework the calculation of § 3, only now under that assumption

that

α0 ≡ µ2 > 0, (4.1)
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again looking for frequencies

ω = ωc(0) + ε, (4.2)

with |ε| � 1. We shall find in these cases (with α0 > 0) that ε ∈ � and the centre
modes are stable. To proceed we could rework the arguments of the previous section
one after another. The problem is very similar, however, and we can use this to
simplify the presentation of the stable centre-mode asymptotics.

We again have the same asymptotic regions as defined in table 1, and by substituting
ν → iµ the solutions (3.5), (3.8) and (3.11) in the three regions all carry over. The
qualitative difference is that now the outer-region solutions have the form

g±(r) ∼ r−1/2 exp

{
±2νi

r
∓ 3ri

16ν

}
as r → 0, (4.3)

and are of the same order of magnitude if r ∈ �. The matching procedure between
the intermediate and outer regions now formally takes place as r → 0 through real
values. Since v must be real for r ∈ �, let us define two alternative outer-region
solutions G±(r), where

G±(r) ∼ r−1/2 sin(Θ), r−1/2 cos(Θ) as r → 0, (4.4)

with Θ ≡ 2ν/r .
We can now perform the matching: applying the outer-region boundary condition

will determine an O(1) and real constant P such that

v ∝ G+(r) + PG−(r) in the outer region, (4.5)

to be matched with the intermediate-region solution (3.8). We obtain, analogous to
(3.14),

ε =
−µ2ω′′

c

2n2
− µ2ω′′

c

2n3

(
1

π
tan−1

(
2P

P 2 − 1

)
− |m| − 1

2

)
+ O(n−4). (4.6)

Since P must be real (4.6) implies centre modes which are stable to O(n−3), and
indeed all higher terms in the expansion are also real, and the modes genuinely are
stable. This is clear because we never need to depart from real values of r in this
section, and the entire problem is consequently real. If we were to fully rework the
arguments of § 3 and include all the algebra, then in each asymptotic region we would
define real solutions, such as (4.4), in place of the complex solutions, such as (3.5),
(3.8), and (3.11). Since we now consider only real r , the coefficients of all the real
solutions and the matching results would also be real.

Provided the real frequencies given by (4.6) are permissible, i.e. they do not lie in the
continuous spectrum, then an infinite number of stable centre modes lie on the real
axis in the ω-plane and accumulate towards ωc(0). If ω =ωc(0) is a global extremum
of ωc(r) over all radii in the flow, then this will be the case. If ωc(0) is in the interior
of the continuous spectrum, then centre modes are not present when α0 > 0.

Figure 1(b) shows the positions of the regular singular points for stable centre
modes as given by (4.6). It is seen a posteriori that matching and approaching r = 0
on the real line is indeed natural. As in § 3 the Frobenius exponents are large and
real as ε → 0, giving rise to rapid oscillations in the intermediate region.

5. Centre modes for the Batchelor vortex
We adopt the Batchelor vortex as a test case to demonstrate the theory we have

presented for inviscid centre modes. A large number of authors have considered the
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stability of this flow in various regimes and a review of some of the most relevant
literature is given in § 1 above. The strongest instability modes, across all parameter
regimes, have previously been found to be inviscid in character; we shall see how
the analysis of § 3 applies to these modes, in agreement with previous numerical
results and also asymptotic studies of certain parameter limits. The strong inviscid
modes are not, however, universally responsible for vortex breakdown, as they are
restricted to relatively small levels of mean swirl. In addition to the discussion of the
strong instabilities, which lie in the heart of the unstable region, we shall therefore
also explore in detail the location of the neutral curve for inviscid instabilities. Of
particular interest is the swirl level above which all inviscid modes are neutralized.

We now apply the results of § 3 and § 4 to the Batchelor vortex. The mean flow is
taken to be

U (r) = a + e−r2

,

W (r) = q
(
1 − e−r2)/

r,

}
(5.1)

defined by swirl parameter q and advection parameter a. We consider temporal
stability, and so without loss of generality we may consider a =0 from here on by
applying a Galilean transformation.

Substituting (5.1) into (2.16), we obtain the expected form (2.17) with

α0 =
kq(kq + m)

(k + mq/2)2
. (5.2)

Restricting to the case m < 0 and q > 0, which has previously been shown to be
the most important region for the inviscid instabilities, it follows that α0 < 0 and
unstable centre modes may be possible for

0 < k < |m|/q. (5.3)

Another stability boundary for the centre modes of § 3 is given by (3.16); finding this
boundary requires a numerical solution of the leading-order outer-region problem of
§ 3.3, i.e. solution of (2.9) with ω = ωc(0) = k + mq , so that ε = 0 in (3.2). We shall
return to the question of the neutral curve shortly, after we first give some numerical
calculations of spectra to demonstrate that the centre-mode structure of § 3 and § 4 is
indeed present.

5.1. Numerical calculations of spectra

We numerically integrate (2.9) with standard error-controlling variable-step-size
integrators in the matlab

TM computing environment. After applying the appropriate
boundary condition (2.10)–(2.11) at rmin (typically 10−3) we integrate up to r = rmax

(typically 20) and check to see if the second boundary condition, v(rmax) = 0, is
satisfied. Using Newton iterations and an initial guess for the eigenfrequency we
converge on a mode in typically 5–10 iterations. The error tolerances in the numerical
integration, rmin and rmax are all varied to ensure satisfactory numerical convergence.
In some cases it proves convenient to deform the numerical integration contour off
the real line into the complex r-plane; we may do this provided the contour is not
deformed through a singularity rc for which (2.8) holds. For instance, recall figure 1(a)
and that unstable centre modes will have RSPs with large Frobenius exponents close
to the real line. For such a case, by deforming the integration contour from the real
line onto the dashed line shown in figure 1(a), so that no singularities are crossed, we
can avoid approaching closer to the RSP than necessary and this significantly aids
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numerical calculation. A discussion of the locations of the RSPs for the Batchelor
vortex is given in the Appendix. Such contour deformation has been employed by
several previous investigators.

Our principal numerical method, as outlined in the preceding paragraph, is of
the classical ‘shooting’ type. In contrast, Mayer & Powell (1992) and most recent
authors have favoured a pseudospectral (or spectral collocation) method. We shall
find that the differences between the two methods are important for resolving the
asymptotic structure described in § 3 and § 4, so we devote some time here to a
careful comparison of the two methods. The shooting method can be highly accurate,
especially when implemented with an error-controlling variable-step-size integrator
and when tailored to the problem by careful contour deformation. However, the
primary disadvantage of shooting is that only one eigenfrequency is considered at a
time. For each individual case any contour deformation must be checked to be valid,
a good initial guess must be supplied to initiate the Newton iterations, and then the
calculation can proceed. Consequently, large-scale calculations and exhaustive sweeps
of parameter space are relatively slow and cumbersome. A pseudospectral method
approximates the eigenvalue problem by a matrix system, and then this system is
solved to give all the modes for a given set of parameters in a single step. Since all
modes are found at once and no initial guess is required, pseudospectral methods
are especially useful for large-scale computations. Accuracy can be improved by
including more basis functions and thereby generating larger matrices, and can be
targeted at specific locations by stretching the coordinate system to concentrate the
collocation points. On the whole, however, very high accuracy on a small portion of
the radial domain is achieved more easily and dynamically by a shooting method.
Pseudospectral methods also have one drawback, which is particularly relevant here:
in attempting to resolve the continuous spectrum by a finite matrix problem a large
number of ‘spurious eigenvalues’ result, densely clustered around the true location of
the continuous spectrum, Cω. The spurious eigenvalues are often easy to identify (for
instance by repeating the calculation with 10% more basis functions and comparing
results), and hence remove. Removing the spurious results has proved successful and
perfectly satisfactory for many problems (Mayer & Powell 1992; Fabre & Jacquin
2004). It is also possible to shift the location of the spurious modes to some extent
by performing collocation on a deformed contour of integration. However, if one
wishes to investigate the immediate vicinity of the continuous spectrum the shooting
method is preferable. Shooting produces no spurious results, and in principle shooting
can proceed for all ω /∈ Cω, and fails only for those ω ∈ Cω. More stringent error
tolerances are required to find eigenfrequencies closer to Cω, but the advantage that a
correctly implemented shooting approach does not give spurious modes remains. In
what follows we must investigate the immediate vicinity of the continuous spectrum
in order to demonstrate asymptotic accumulation of eigenfrequencies as predicted by
§ 3 and § 4. Also, our study of the neutral curve will require inspection of the vicinity
of Cω, because the instabilities become neutral by approaching, and then disappearing
into, Cω as parameters are varied (in fact, they move onto the other, non-physical,
Riemann sheet of the complex ω-plane).

As a check on our shooting routine, a pseudospectral code was used to compare
to the shooting results where that was possible, namely for the modes farthest from
the continuous spectrum Cω in figures 2(a), 4(a) and 5(a). Good agreement was
obtained away from Cω, but we found that the immediate vicinity of Cω could only
be investigated by the shooting method, as expected. Our calculations have also been
checked by comparing to the results of Mayer & Powell (1992).
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Figure 2. (a) The frequency spectrum for (m, q, k) = (−1, 0.46, 0.81). Each + shows a mode,
and the location of the continuous spectrum Cω is indicated by a thick grey line. (b) +,
log(|Re(ε)|); �, log(|Im(ε)|) against log n. The straight lines in (b) have gradients of −2 and
−3 for comparison.

5.2. Unstable centre modes

We begin by looking at the region of parameter space known (Lessen et al. 1974;
Mayer & Powell 1992) to possess the strong inviscid instabilities. Our aim is to
demonstrate that the known instabilities are members of a larger family which is
described by the asymptotic framework of § 3. We will then discuss how the centre-
mode description of the instabilities, given by § 3, relates to various results in the
existing literature. In particular, we will discuss the relation to the |m| � 1 asymptotics
of Leibovich & Stewartson (1983).

We present our first numerical results for the case (m, q, k) = (−1, 0.46, 0.81). These
parameters correspond to the strongest inviscid instability for which m = −1, having
a growth rate of Im(ω) = 0.2424 (see Mayer & Powell 1992, table 2). The strongest
mode was satisfactorily recovered by both our shooting and pseudospectral codes.
The full results of the shooting calculation are shown in figure 2. The shooting
method accurately finds over 60 unstable modes in this case and these are shown in
figure 2(a), together with their stable complex conjugates. The continuous spectrum
Cω for these parameters is given by −0.11 � ω � 0.35, and its location is indicated in
figure 2(a) by a superimposed thick grey line. Figure 2(b) examines the dependence
of ε on the mode number n, where ε is defined by (3.2) and note that ωc(0) = 0.35
in this case. The mode with largest |ε| is numbered n= 1, and subsequent modes
are numbered in order of decreasing |ε| (which is equivalent to order of decreasing
|Im(ω)|, noting figure 2a). Figure 2(b) shows that the power laws for Re(ε) and Im(ε)
predicted by (3.14) are realized; further, the coefficient of the leading-order n−2 term
was −0.41 for the numerical results, which compares favourably with the predicted
value of ν2ω′′

c /2 = −0.40 for these parameters. Inspection of the eigenfunctions for
the modes shows that they are strongly peaked and increasingly oscillatory close to
the axis, in the manner predicted. As an example, figure 3 shows the eigenfunction
for the unstable mode ω =0.334 + 0.00482i, for which n= 5. The predicted radius of
localization (3.15) has the value ν/n = 0.166 for the mode in figure 3, which compares
well with the numerical eigenfunction. We conclude that the instabilities for these
parameters form an infinite family of centre modes as described by the analysis of
§ 3. Similar numerical investigations of other parameter values have produced similar
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Figure 3. The eigenfunction v(r) for the n= 5 unstable mode of figure 2. Solid line: real
part, dashed line: imaginary part.
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Figure 4. The frequency spectrum for (m, q, k) = (−5, 0.83, 0.2.70) found by (a) shooting,
(b) a pseudospectral method with 100 basis functions. In both the location of the continuous
spectrum Cω is indicated by a thick grey line, and each symbol shows a numerically determined
mode.

results, and we therefore claim that the asymptotic structure of § 3 applies generally
to previously reported inviscid instabilities.

For a further example of the unstable modes we consider (m, q, k) = (−5, 0.83, 2.70),
the parameters corresponding to the strongest m = −5 instability (Mayer & Powell
1992, table 2). Figure 4(a) shows the spectrum, with the primary mode in agreement
with Mayer & Powell’s result, and the higher-order modes accumulating towards
ωc(0) = −1.47 in the characteristic fashion described by (3.14). It is convenient at this
point to digress briefly, and to use this example to clarify the comments made in § 5.1
about the differences between shooting and pseudospectral calculations. Figure 4(b)
shows the results of a calculation made with 100 spectral basis functions for the same
parameter values. We see that the first 6 unstable modes are accurately resolved,
and that a cloud of spurious eigenvalues surrounds the vicinity of the continuous
spectrum. Figure 4(b) is significantly quicker to produce than figure 4(a), so if one is
interested in just the primary, or even just the first 6 modes, then the pseudospectral
method is preferable because the spurious results in figure 4(b) can be easily removed
by standard methods. However, the spurious modes are actually concealing the finer
mathematical structure visible in figure 4(a), which is exactly the detail we wish to
display. Hence, removing the spurious pseudospectral modes is not sufficient for the
present purpose, and so shooting, which generates no spurious modes, is preferred
here. Now, the parameters for the calculation in figure 4(a) were chosen specifically to
make a connection between the description of the modes given by § 3 and the successful
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|m| � 1 asymptotics of Leibovich & Stewartson (1983). Table 2 of Mayer & Powell
(1992) shows that |m| =5 is sufficiently large that the most unstable disturbance is
fairly well described by the |m| = ∞ asymptotics. On the other hand figure 4(a) shows
that the asymptotic process (3.14), involving the n → ∞ limit, is also present. To
connect the two, let us label the general eigenfrequencies by ω(m,n), where m, n ∈ �
are the azimuthal order and mode number, respectively. On fixing the azimuthal order
m, then § 3 shows that for each m there is an infinite set of eigenfrequencies and that
the limit n → ∞, with m fixed, is described by (3.14). Alternatively, if n is held fixed
and we let m → ∞, then the analysis of Leibovich & Stewartson (1983) applies, and
the mode is described by Leibovich & Stewartson’s asymptotics. The two asymptotic
limits, of large m and n, are therefore compatible.

From our numerical investigations of the inviscid instabilities presented in figures 2–
4, and also many more similar calculations for which the detailed results are not
reproduced, we conclude that the description of § 3 applies generally to previously
reported instabilities. We have discussed how the asymptotic limit n → ∞, m fixed,
is compatible with the limit m → ∞, n fixed, the latter being the regime studied
by Leibovich & Stewartson (1983). The existence of the limit n → ∞, with m fixed,
also seems to explain the finding (reported in several numerical investigations of the
inviscid instabilities, e.g. Duck & Foster 1980; Mayer & Powell 1992) that there are
often multiple unstable modes. The pseudospectral calculation in figure 4(b) found
6 instabilities, and as many as 10 have been reported for some parameter values
(Mayer & Powell 1992). The explanation is simply that there are infinitely many
modes, but that a pseudospectral (or finite difference, in the case of Duck & Foster
1980) matrix method conceals a varying number of the higher modes. The aim of our
presented results is, in part, to show that the asymptotics of § 3 and § 4 allow more
complete pictures of the spectrum to be drawn: the spectrum comprises a continuous
spectrum plus discrete modes of varying types, figures 2(a) and 4(a) being examples
with unstable centre modes.

5.3. Other modes

We now take a small diversion from the question of instability (the main physical
problem of interest) to discuss the stable centre modes described in § 4. We require
α0 > 0 and ωc(0) to be a global extremum of ωc(r) to obtain stable centre modes as
described by § 4. If we consider, as before, m < 0 and q > 0, then this reduces to

k > |m|/q and k > |m|q,

or k > |m|/q and k < |m|q/2.

}
(5.4)

Figure 5(a) shows the spectrum for (m, q, k) = (−1, 3, 1), which demonstrates the
asymptotic behaviour (4.6). In this case ωc(0) = −2, and we find a large number of
stable centre modes accumulating as predicted; the first 100 modes are plotted in the
figure, after which the shooting calculation was terminated. An example eigenfunction,
the n= 5 stable mode, is plotted in figure 5(b). For larger n the modes are increasingly
oscillatory near the vortex axis. Figure 5(b) contrasts with figure 3, the corresponding
picture for an unstable centre mode, which is strongly localized at a small but non-
zero radius. The differences are best explained by recalling figure 1 and the differing
locations of the RSPs. Alternatively, note that the argument of the exponential in the
intermediate region solution (3.8) is real to leading order for unstable centre modes,
but imaginary for stable centre modes; hence the unstable modes grow exponentially
in the intermediate region, causing the strong localization. The results presented
in figure 5 are typical of our numerical investigations, and we conclude that the
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Figure 5. (a) The frequency spectrum for (m, q, k) = (−1, 3, 1) (b) The eigenfunction v(r) for
the n= 5 stable mode of (a).

description of § 4 applies for all suitable parameter values. We note that similar stable
centre modes were predicted by Leibovich, Brown & Patel (1986) in the limiting case
0 < kq(kq + m) � 1, a limit which can be realized by long-wavelength modes, for
instance. Recalling (5.2), the analysis of § 4 is seen to be compatible with that of
Leibovich et al. (1986). Indeed, we see that such stable centre modes exist over much
of parameter space, and not only for limiting parameter values.

Finally, we mention for completeness that a further type of mode is also possible,
namely the ring modes which are described in I. Ring modes are possible when an
extremum of ωc(r) occurs for a radius in the interior of the flow. Numerically we
observed families of ring modes for various parameter values; however, they are not
the focus of the present paper. Indeed, for our investigation of the Batchelor vortex
neutral curve at small m (and in particular m = −1) in the next subsection, they play
no part whatsoever. All the unstable ring modes we found for small m were confined
to a small region of parameter space within the region of unstable centre modes,
and also had much weaker growth rates than the corresponding centre modes. As a
specific example, let us discuss m = −1, which is the case for which we shall present
detailed results in the following subsection. Unstable ring modes are possible for the
inviscid Batchelor vortex when m < 0 for q/2 < k/|m| < 1/q . For m = −1 they were
observed in the small subset of the unstable parameter space shown in figure 6. In
figure 6 the neutral curve calculated by Mayer & Powell (1992) is reproduced to
indicate that the ring modes are restricted to a small sub-region of the instability
region. In fact, we will show in § 5.4 that the instability region is somewhat larger
than the dashed line in figure 6. The unstable ring modes in figure 6 also have much
smaller growth rates (of the order 10−5) than the most unstable centre mode at the
same parameter values. The ring modes are not amongst the modes found by any
of the previous investigators: being so close to the continuous spectrum (because of
the small growth rates) the unstable ring modes are only accessible with a shooting
method using an appropriately deformed contour.

For clarity and completeness, then, the ring modes and stable centre modes have
been mentioned but, as we now focus our attention on the question of the small-m
stability boundaries, they will not be discussed any further. To reiterate, unstable ring
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Figure 6. The (q, k)-plane for the case m= −1. Solid lines show k = 1/q , q and q/2. The
dashed line shows the region of instability found by Mayer & Powell (1992). The grey shading
indicates the region containing unstable ring modes.

modes exist in a small subset of the unstable region for centre modes, and where they
do exist they have much smaller growth rates than the corresponding unstable centre
modes. It is the unstable centre modes which have the largest growth rates and which
are present over the entirety of the unstable region.

5.4. The stability boundary of the inviscid Batchelor vortex

We now investigate the stability boundary, or neutral curve, of the inviscid Batchelor
vortex for small m. Having described the asymptotic theory of unstable centre modes,
and a numerical shooting technique which can capture the asymptotic structure, we
apply these to the problem of the neutral curve. We investigate in detail the case
m = −1 in this subsection.

Consider first the boundaries predicted by § 3 for the existence of an infinite family
of unstable centre modes. One such boundary is given by α0 = 0, which by (5.2)
gives three possibilities: k = 0, q = 0 and k =1/q . The second such boundary is (3.16),
i.e. |Q| =1. The quantity Q relates to the leading-order outer-region problem, so to
determine it we set ε = 0 in (3.2) and proceed. Now, for ε = 0 the two RSPs depicted
in figure 1(a) are coincident and located at the origin r = 0. We integrate (2.9)
numerically from an outer boundary rmax, where the condition v(rmax) = 0 is applied,
towards the origin. Formally, using the arguments of § 3, we must follow a contour
akin to the dashed line in figure 1(a) until |r | = δ � 1, and then extract from the
numerical data coefficients of the two exponentials (3.11) and hence determine Q via
(3.12). Although this procedure was found to work, it is computationally expensive to
resolve the very fast oscillations of (3.11) for small and imaginary values of r . Instead,
the following more efficient procedure, which is mathematically equivalent, was used.

(a) First integrate (2.9) from r = rmax to r = 1 along the real axis.
(b) Integrate from r = 1 to r = δ � 1 along the real axis, and extract the coefficient

of g+, the exponentially growing solution.
(c) Integrate from r = 1 to r = −1 along the semi-circular contour r = eiθ , 0 � θ �

−π.
(d) Integrate from r = −1 to r = −δ along the negative real axis, and extract the

coefficient of g−, which is exponentially growing as r → 0 through negative values.
The two coefficients of g± are then combined to calculate Q using (3.12). For our
numerical calculations the value of δ was reduced until satisfactory convergence was
obtained for the value of Q. Typically δ = 0.1 was found to be sufficient for the
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Figure 7. The (q, k)-plane for the case m= −1. The dashed line shows the neutral curve found
by Mayer & Powell (1992). The solid line shows the predictions of § 3: k = 1/q (solid line with
no symbols) and |Q| =1 (solid line overlaid with ◦ symbols).

exponentially growing solution to be dominant and to yield an accurate value for the
coefficient.

The calculation of |Q| is thus relatively straightforward, and the results are shown
in figure 7. The calculated curve |Q| =1 is shown in the figure overlaid with symbols
to differentiate it from the other predicted neutral curve k = 1/q , and the symbols are
merely for clarity of presentation. The curve |Q| =1 was calculated and plotted using
many more points than the number of ◦ symbols in the figure.

Before commenting on figure 7 we shall also present the results of a purely
numerical determination of the neutral curves of the centre modes, found using our
specially tailored shooting method. The strategy here was first to identify an unstable
mode at a location comfortably in the interior of the unstable region, where the
growth rates are large enough for both shooting and pseudospectral codes to be used
and compared. Then we track this mode towards the neutral curve by incrementally
changing q and k and at each step performing a new shooting calculation with
an initial guess derived from the eigenfrequency at the previous step. A deformed
integration contour was again used to aid the computation. We found that the curve
k = 1/q accurately described one portion of the neutral curve. Figure 8 shows the
numerically determined neutral curves for the primary, secondary and senary unstable
centre modes (i.e. those with n= 1, 2 and 6, respectively) and how these compare
to the |Q| =1 curve. Very close agreement is found, with the single exception of the
primary mode in figure 8(a). The general trend is that on approaching the neutral
curve the primary mode stabilizes first, followed by the secondary and higher-order
modes in order. The neutral curves of the higher modes become closer and closer to
the |Q| =1 boundary. By the time the senary mode (i.e. with n= 6) is considered, the
computed neutral curve is almost indistinguishable from the |Q| =1 curve.

In order to interpret figures 7 and 8 it is timely to reconsider exactly what the
condition |Q| =1 means in terms of the asymptotic theory of § 3. It is clear that
each mode in the infinite set of centre modes must have its own neutral curve.
Rather than exactly describing any one of the modes, (3.14) relates to the n → ∞
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Figure 8. Close-ups of the (q, k)-plane for the case m= −1. Solid and thick dashed lines as
in figure 7. The dotted, dashed and dash-dotted lines show the neutral curves of the primary,
secondary and senary centre modes respectively.
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Figure 9. Close-up of the (q, k)-plane for the case m= −1. All lines have the same meaning
as in figure 8. The ∗ symbol shows the upper neutral point as predicted by Stewartson &
Brown (1985).

limit. Hence |Q| =1 is to be interpreted as the stabilization of the infinite tail of
the high-order modes. Our numerical computations shown in figure 8 find that the
low order (primary, secondary etc.) modes stabilize first, followed by the infinite tail.
Hence, the neutral curve of the infinite tail of high-order modes, |Q| =1, is in fact the
overall neutral curve.

Finally, let us examine the upper neutral point. Stewartson & Brown (1985)
performed an asymptotic calculation looking for unstable modes lying on k =1/q ,
the solid line without symbols in figures 7–9. They predicted that the upper neutral
point would lie on this line with (q, k) = (2.31, 0.433). Figure 9 shows a close-up of
our results at the upper neutral point. Our numerical methods can track the neutral
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Figure 10. (a) For m= −1, the growth rate of the primary mode along the line segment
between (q, k) = (1.3, 0.6) and (2, 0.45) (i.e. k = (123 − 30q)/140). (b) The same as plot (a),
shown with a logarithmic scale.

curves very close to neutrality, but are unable to continue beyond what is plotted
in the figure as the growth rates become too small. The solid lines showing the two
neutral curves derived in § 3 (that is, |Q| =1 and k = 1/q) appear on course to intersect
at the ∗ symbol, in agreement with Stewartson & Brown’s result. Our numerically
computed neutral curves in figure 9 show the primary, secondary and senary modes
being stabilized at values of q approaching 2.31 from below, which is the first
numerical confirmation of q = 2.31 as the upper neutral point. Overall, the agreement
between our asymptotic and computed neutral curves, and also their agreement with
Stewartson & Brown’s result at the upper neutral point, leads us to conclude that the
neutral curve is correctly given by the solid lines in figure 7. In particular, the upper
neutral point is indeed at q = 2.31, in agreement with Stewartson & Brown’s principal
result. Stewartson & Brown’s more detailed results further predicted that for q < 2.31
neutral modes exist on the line k = 1/q only in discrete intervals of q , implying small
deviations of the neutral curve from k =1/q . It was not numerically possible to confirm
this detail, however, and their asymptotic analysis remains the best guide to this.

The results presented have concentrated on the case m = −1, in order to give as full
an account as possible of the (q, k)-plane, and also to allow us to discuss the upper
neutral point (the overall upper neutral point, over all m, occurs for m = −1). The
inviscid Batchelor vortex is similarly unstable for all m < 0 and analogous detailed
calculations to those presented for m = −1 were also performed for m = −2, −3.
Similar results were obtained, with the unstable region larger than previously reported
and the maximum q for inviscid instability in agreement with Stewartson & Brown’s
predictions of q = 2.11, 1.99 respectively.

Finally, let us return to the m = −1 case. The neutral curve we have found differs
from that of previous numerical investigations, so let us inspect the newly found
instabilities. The upper neutral point has been a question of particular interest, and
it is at this point that the solid and dashed lines in figure 7 differ most. Figure 10
shows the growth rate of the primary (n= 1) unstable mode along the straight line
segment from (1.3, 0.6) to (2, 0.45) in the (q, k)-plane, which starts within Mayer &
Powell’s neutral curve; see figure 8(b). The growth rate is seen to drop dramatically
for q � 1.5, though it remains positive because the line segment lies entirely within
the unstable region. The dramatic drop in growth rate can largely be explained by
the peculiar shape of the instability region, which extends to larger q only in a very
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narrow tongue. Modes lying in this tongue are simultaneously close to two different
branches of the neutral curve, and so growth rates are much smaller than would be
found a similar distance from other segments of the neutral curve. If distance from
the neutral curve is considered as a small parameter, say β � 1, then growth rates
in the narrow tongue will be O(β2), compared to the more typical O(β) at the rest of
the neutral curve. For example, there is no such dramatic reduction in Im(ω) near the
upper portion of the |Q| =1 neutral curve in figure 7. In the context of investigating
the mathematical structure of the inviscid problem, the peculiar shape of the neutral
curve, and the very small growth rates at larger q , explain why determining the
neutral curve has proved a difficult problem. In the wider context of vortex stability
and breakdown, the weakness of the instabilities at larger q will restrict the direct
relevance of those modes, something we discuss below.

6. Conclusions
We have presented a theory of inviscid modes with a centre-mode structure, and

applied it to the much-studied case of the Batchelor vortex. Inviscid modes are of
course only one aspect of vortex breakdown, but within the context of the inviscid
problem the asymptotic theory presented gives some new understanding. Much study
has been directed at problems of vortex stability. It is hoped that the combined results
of I and the current paper give a thorough mathematical account of the inviscid
problem, and that this will complement the work in other (e.g. viscous) regimes.

Thinking specifically of the Batchelor vortex case study, we have found that the
inviscid instabilities previously found numerically, and studied asymptotically in many
parameter limits, are generally centre modes of the type described. The instabilities can
be classified as centre modes throughout the unstable region, and the inviscid spectrum
typically looks like figure 2(a). In different respects this analytical framework agrees
with the results of others, obtained in large-|m|, near-neutral (i.e. kq(kq + m) � 0),
or other parameter limits. As for concrete results, we have presented detailed results
for the m = −1 neutral curve, and verified numerically that it is given correctly by
the centre-mode analysis. The advantages and limitations of both pseudospectral and
shooting numerical methods were found to be important in the calculation of the
neutral curve, and it seems that care is needed for this problem.

One point of particular note is that our results agree with Stewartson & Brown’s
(1985) result that the upper neutral point occurs at q = 2.31. Numerical calculations
have not recovered this result before, which may perhaps be attributed to the peculiar
shape of the neutral curve at larger q , and the resulting very small growth rates. The
very small growth rates of the newly found instabilities means that they are unlikely to
directly affect the bigger picture of vortex breakdown. Figure 4(a) of Fabre & Jacquin
(2004) shows that for m = −1 and q = 2 the primary viscous mode is much stronger
than the q = 2 inviscid mode of figure 10, for all realistic Re. Also, Fabre & Jacquin
found that viscous instability modes occur at any q for sufficiently large values of
Re, so there is no ‘upper neutral point’ for the full viscous problem. Nevertheless
it is still important that the precise structure of the inviscid problem is identified,
and in the present paper we have determined in detail the location of the inviscid
neutral curve. Several numerical and analytical studies of the inviscid problem are
now brought together, in particular the most unsatisfactory discrepancy, surrounding
the location of the upper neutral point, is resolved. The upper neutral point and the
other corrections to the neutral curve have revealed no significant new instabilities.
This allows us to conclude, as anticipated, that instability and breakdown observed
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at values of q � 2 is not a direct result of inviscid instabilities, and instead other
possible explanations must be explored, such as viscous modes.

Finally, the details of the inviscid problem for swirling flow may be relevant to
other future developments.

(a) It should be possible to match the mathematical structure of inviscid solutions
onto large-Re theory, to complement and compare to recent studies of the viscous
modes (Le Dizès & Fabre 2006). For example, consider a small viscous correction,
Re−1 � 1, to the structure described in § 3. The continuous spectrum Cω of the
inviscid problem is formally absent and is replaced by a large number of closely
packed stable discrete modes. The width of the critical layer scales as O(Re−1/3), to
be compared with O(|ε|) as the smallest length scale of the centre modes. The theory
of § 3 corresponds to Re−1/3 � |ε|, and so in view of (3.14) we expect the number N

of unstable centre modes to scale as N = O(Re1/6).
(b) While an infinite tail of instability modes with very small growth rates may be

less important than a strong primary mode in the long-time limit, transient growth
is a different matter. It is not always clear why transient growth is large in some
circumstances and not in others, but preliminary results of our further work suggest
that the infinite tail of centre modes (§ 3 and § 4), and also the continuous spectrum
(discussed by I), play a major role in controlling the level of transient growth in a
vortex breakdown situation. We believe that the mathematical details of the inviscid
problem will prove important for this, and work is ongoing.

The author would like to thank Prof. N. Peake for many useful discussions and
also Trinity College, Cambridge, for its financial support.

Appendix
In this appendix we discuss the critical radii rc of the Batchelor vortex, as defined

by (2.8) and (5.1). Setting u = r2
c , (2.8) becomes

−ω + k(a + e−u) + mq(1 − e−u)/u = 0, (A 1)

a transcendental equation which must be solved numerically in general. Solving (A 1),
and thus finding the RSPs, was required to ensure that no integration contour was
deformed through a singularity in our numerical computations. For our calculations
(A 1) was solved using Newton iterations, with a variety of complex initial guesses to
ensure that all solutions were found.

Olendraru et al. (1999), who also consider the inviscid Batchelor vortex, argue
that (A 1) has at most two distinct roots; however, this is incorrect. Specifically,
their equation (A7) is a sufficient but not (as is argued) a necessary condition on
the solution u. In fact (A 1) admits an infinite number of solutions: the presence
of the exponential on the left-hand side of (A 1) means that inverting the equation
introduces a logarithmic branch cut. To proceed, let

u = b1n + b0 + b−1n
−1 + · · · , |n| � 1, (A 2)

and substitute into (A 1). Comparing terms of the same order, we find

b1 = 2πi,

b0 = − log(ω/k − a),

b−1 =
mq((a + 1)k − ω)

kb1(ω − ak)
.

⎫⎪⎪⎬
⎪⎪⎭ (A 3)
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By taking |n| large, for n both positive and negative, and taking both branches of

the square root, we therefore find rc ∼
√

2π|n|eiθ for θ = ± π/4, ±3π/4. This can be
verified by direct numerical solution of (A 1), using a number of initial guesses for
the Newton iterations distributed over a region of the complex u-plane.
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